
IEEE COMMUNICATIONS LETTERS, VOL. 18, NO. 7, JULY 2014 1107

Closed Form Asymptotic Expression of a Random-Access Interference Measure
Guido Carlo Ferrante, Student Member, IEEE, and Maria-Gabriella Di Benedetto, Senior Member, IEEE

Abstract—A model describing the cumulative effect of the in-
dependent access of K users to a shared resource, which is
formed by N elements, is proposed, based on which an integer
interference measure ζ is defined. While traditional cases can
be reconducted to reference well-known results, for which ζ is
either Gaussian or Poissonian, the proposed model provides a
more general framework that offers the tool for understanding the
nature of ζ. In particular, an asymptotic closed form expression
(K → ∞, N → ∞, K/N → β ∈ (0,∞)) for ζ distribution is
provided for systems presenting constructive versus destructive
interference, and as such is applicable to characterizing statistical
properties of interference in a wide range of random multiple
access channels.

Index Terms—Interference, multiple access channels, large-
system limit analysis.

I. INTRODUCTION AND SYSTEM MODEL

WHEN many users access a common resource indepen-
dently, they may interfere with each other. A resource

can be viewed, in general, as a set of elements that are used
to transmit information. For example, at the physical layer,
the resource is the set of degrees of freedom that carry the
information-bearing signal: a system using bandwidth W for
time T with Nt antennas can access WTNt degrees of freedom
belonging to time, frequency and space domains; at the medium
access layer, the resource is usually time supporting either
continuous or slotted packet transmission.

In the proposed model, the resource is a discrete set of N
elements1 [1 : N ], i.e., Nslots. This description holds when the
resource is discrete, or can be aptly discretized. Resource is
shared independently by K users: user k chooses a subset Lk

of L (irrespective of k) slots, ignoring the other users choice,
and assigns a label S!

nk to each accessed slot n ∈ Lk.
Fig. 1 illustrates the abstract setting, where a resource is

made up of N slots and K users access randomly to a subset
of slots, which is shown for L = 1.
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1In this paper, two common notations in combinatorics are used: the set
{m,m+ 1, . . . ,m+ n− 1} is denoted by [m : m+ n− 1], and, when
m = 1, it is simply written as [n].

Fig. 1. Abstract setting: a resource composed on N parts (slots) is randomly
accessed by K users. Each user assigns to the accessed slot a numerical value
(label), randomly and independently from other users.

Let Snk = S!
nk for n ∈ Lk, and Snk = 0 otherwise, that is,

Snk is zero for the non-accessed slots of user k, while it is
equal to the assigned labels for the accessed slots. Therefore,
S!
nk∈S!, whereS! is the set of possible values that the label may

assume, and Snk∈S , where S and S! may or may not be equal.
Let Znk be the sum of labels assigned to slot n by all users

but user k, that is:

Znk =
K∑

i=1
i!=k

Sni. (1)

By specifying S! and L, the proposed model encompasses
the problem of statistically describing multiple access interfer-
ence for communication systems in which interference has a
quantal nature, or can be reconducted to the model of eq. (1).
Let present four examples: the first three address well-known
problems, and are intended to clarify concepts and notations
defined above, while the last addresses a novel problem, that is
solved thanks to results proved in this paper.

Example 1: This example may refer to throughput of Slotted
Aloha at the medium access layer [1]. Assume that resource is
time, that is slotted in N equal parts, and that K users, each
willing to transmit a single packet, independently choose one
of the N slots. In this setting, L = 1 and S!

nk can be interpreted
as the binary variable indicating the presence (S!

nk = 1) or
absence (S!

nk = 0) of packet of user k within slot n. The goal
is to find the number of colliding packets with user k packet,
i.e., the number of packets in the slot nk selected by user
k. Given nk, it results S!

nk = δn,nk . Moreover, S! = {1} and
S = {0, 1}. Znk in eq. (1) indicates the number of packets in
slot n that are transmitted by all users but user k, and, therefore,
the goal is to find Znkk. In the large-system limit, that is, as
N → ∞, K → ∞, and (K/N) → β ∈ (0,∞), both Znk and
Znkk are distributed according to a Poisson distribution with
mean β.

Example 2: This example may describe demodulation of
direct-sequence spread-spectrum (DSSS) signals with a single-
user matched filter bank. Assume that resource is time, that is
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slotted in N chips of duration ∆, and supports transmission
of synchronous random DSSS signals [6]. Let the received
signal be

y(t) =
K∑

k=1

bksk(t) + n(t), (2)

where K is the number of users, {sk(t)}Kk=1 is the set of unit
energy transmitted spreading waveforms, {bk}Kk=1 is the set of
transmitted antipodal symbols, and n(t) is a white Gaussian
noise process with power spectrum σ2

N . Direct-sequence
implies sk(t) =

∑N−1
n=0 sk[n]ψ(t− n∆), where {sk[n] : k =

1, . . . ,K;n = 0, . . . , N − 1} are i.i.d. r.v.s assuming values in
{−(1/

√
N), (1/

√
N)} with equal probability (see e.g. [6]). In

this scenario, L = N , S! = {−(1/
√
N), (1/

√
N)}, S! = S ,

Snk = bksk[n], and Znk is the signal interfering with that of
user k, within chip n, at the output of a chip-matched filter.
The goal is to find the distribution of Znk, that can be used,
for example, in order to find the capacity of the system. In the
large-system limit, Znk is Gaussian distributed with zero mean
and unit variance. Generally, a Lindeberg condition suggests
that if a fixed fraction, however small, of degrees of freedom is
“uniformly” used, then Znk is Gaussian distributed; otherwise,
if few degrees of freedom are used in the large-system limit,
e.g. a finite number, then the asymptotic distribution may be
not Gaussian, as is usually the case.

Example 3: This example may describe demodulation of
binary PPM time-hopping spread-spectrum (THSS) signals
with a single-user matched filter bank, where interference
is at physical rather than medium access layer compared to
Example 1, and can only be constructive. Assume that resource
is time, that is divided in N/2 chips of duration ∆, and sup-
ports transmission of synchronous binary PPM THSS signals
(see e.g. [5]). Let the received signal be

y(t) =
K∑

k=1

ψ(t− ck∆− εbk) + n(t), (3)

where K is the number of users, ck is uniformly distributed over
[0 : (N/2)− 1] assuming N/2 an integer, {bk}Kk=1 is the set of
binary transmitted symbols, and, for the sake of simplicity, ψ(t)
is a zero-excess bandwidth waveform with band [−W/2,W/2],
and 1/W = ∆/2 = ε. In this model, there are N slots of
duration ∆/2, S! = {1}, S = {0, 1}, and Znk may be regarded
as the interference of the output of a filter slot-matched to slot
n. In the large-system limit, Znk is distributed according to a
Poisson distribution with mean β, as in the first example.

Example 4: Example 4 is similar to Example 2, except for
the random spreading sequences that now belong to the time-
hopping family (see e.g. [3], [4]), i.e., for any fixed k, sk[n] ∈
{−1, 1}, with equal probability, for only one chip nk ∈ [0 :
N − 1]. In this case, Znk is the interference, to which contribute
both constructive and distructive terms bisi[n] for i &= k, at
the output of a filter chip-matched to chip n, S! = {−1, 1},
and S = {−1, 0, 1}. Moreover, Znkk is the interference at
the output of the single-user matched filter of user k. The
distribution of Znkk is unknown, and can be found thanks to
the result presented in this paper.

As hinted by Example 4, this paper finds, in the large-system
limit, the closed form distribution of:

ζk
∆
= Znkk =

K∑

i=1
i!=k

Snki. (4)

The paper is organized as follows: in Section II the main
result is presented and proved; essential analytic combina-
torics are recapped in the Appendix. Conclusions are drawn in
Section III.

II. MAIN RESULT

Theorem 1: Let N be the number of slots of a resource, that
is shared by K users. The generic user k ∈ [1 : K] selects one
slot only nk ∈ [1 : N ], and assigns to this slot a label S!

nkk
that

is a r.v. taking value in {−1, 1} with equal probability. Then,
ζk, as defined in eq. (4), is distributed in the large-system limit,
that is, for N → ∞, K → ∞, and K/N → β ∈ (0,∞), as:

Pζ =
∑

m∈Z
e−βIm(β)δm, (5)

irrespective of k, where Im(β) is the modified Bessel function
of the first kind.

Proof: We provide two proofs. The first proof is proba-
bilistic: Snk is regarded as a r.v. and the pdf of ζ is derived
straightforwardly via algebraic manipulations. The second
proof is based on results of analytic combinatorics: the prob-
ability P(ζ = z) is derived by considering all the ways, and the
associated probability, a particular value z of ζ can be obtained;
the law of large numbers guarantees that the so obtained result
holds with probability one in the large-system limit.

First Proof: For fixed k, ζk is the sum of (K − 1) i.i.d.
random variables {Snki}

K
i=1,i &=k, each of which is distributed

according to:

PS =
1

2N
δ−1 +

(
1− 1

N

)
δ0 +

1

2N
δ1. (6)

Denoting by b(n, p; r) =
(n
r

)
pr(1− p)n−r, one has:

Pζk =
K−1∑

i=0

b(K − 1, 1/N ; i)
1

2i

i∑

$=0

(
i

'

)
δ2$−i.

In order to obtain the asymptotic pdf, rewrite the previous
relation as follows:

Pζk =
∑

|m|<K






Jm∑

j=0

c|m|+2j,j




 δm, Jm =
K − 1− |m|

2
,

where this time the contribution to the amplitude of each Dirac
mass is isolated in the term in parentheses, that is defined
as ci$ = b(K − 1, 1/N ; i)(1/2i)

(i
$

)
. In the large-system limit,

the Binomial distribution tends to a Poisson distribution with
mean β, b(βN − 1, 1/N ; i) → e−β(βi/i!), and the term in
parentheses reduces to e−βI|m|(β), being:

Im(β) =
∞∑

i=0

1

i!
· 1

(m+ i)!

(
β

2

)2i+m

.
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Fig. 2. Two simple lattice walks are shown. In the two cases, K = 10, and
therefore the walk length is 9, and steps are S = {−1, 0, 1}, as shown in
the box at the north-east corner. Both walks start from (0,0) and end at (9,1):
the darker corresponds to the sequence (1, 0, 1,−1, 0, 1, 1,−1,−1), while the
lighter corresponds to (0,−1, 0,−1, 0, 0, 1, 1, 1).

Finally, Pζk becomes:

Pζ =
∑

m∈Z
e−βI|m|(β)δm,

irrespective of k. The theorem follows since I|m|(β) = Im(β)
when m ∈ Z.

Second Proof: As expressed by (4), ζk is a sum of the form:

ζ =
K−1∑

i=1

si, si ∈ {−1, 0, 1},

where subscript k is discarded. In order to find P(ζ = h), the
number of ways h can be obtained as sum of elements of
a sequence (s1, . . . , sK−1) is counted, and let the probability
each that sequence appears be:

Pr(ζ = h) =
∑

sk∈S,k∈[K−1]∑K−1

k=1
sk=h

P (s1, . . . , sK−1). (7)

Sequence (s1, . . . , sK−1) can be regarded as an unconstrained,
simple walk of length K − 1 in the lattice Z× Z (refer to the
Appendix for definitions and theorems of analytic combina-
torics that are used in this paper). Fig. 2 shows two such walks
with |S| = 3 possible steps, S = {−1, 0, 1}, where notation
for simple walks is adopted. Associated with these steps are
weights 1/(2N) and (1− (1/N)) (see box at north-east corner
of Fig. 2) such that the characteristic polynomial of S is:

P (y)=
1

2N

1

y
+

(
1− 1

N

)
+

1

2N
y=1− 1

N

(
1− y

2
− 1

2y

)
.

Thanks to weights, the probability a particular point in Z× Z is
reached can be computed. In order to find P(ζ = h), summation
in eq. (7) is over walks starting from (0,0) and ending at (K −
1, h), and the probability within the sum is that associated to
each walk, that is the product of probabilities associated to steps
composing the walk. The generating function of these walks is:

W (x, y) =
1

1− xP (y)
=

∑

k≥0

P (y)kxk,

the coefficient [xK−1yh]W (x, y) giving the probability to reach
(K − 1, h):

[xK−1yh]W (x, y) = [yh]P (y)K−1

= [yh]

[
1− 1

N

(
1− y

2
− 1

2y

)]K−1

.

In the large-system limit, the quantity in brackets converges to:

[xK−1]W (x, y) −→ eβα(y)
∆
= P̄ (y),

with α(y) = 1− (y/2)− (1/2y) = −(y − 1)2/2y. In order to
find [yh]P̄ (y) and therefore [xK−1yh]W (x, y), Cauchy’s inte-
gral formula can be used as follows:

[yh]P̄ (y) =
1

2πj

∮

γ

P̄ (y)

yh
· dy
y

=
1

2πj

∮

|y|=1

P̄ (y)

yh
· dy
y

=
1

2π

∫ 2π

0
P̄ (ejθ)e−jhθdθ

= e−β

∫ 2π

0
eβ cos θe−jhθdθ = e−βIh(β).

Therefore, ζ assumes the integer value h with probability
e−βIh(β), hence the theorem. !

Fig. 3 shows simulations (filled circles at integer values)
versus theoretical envelope e−βI|z|(β), z ∈ R (red solid line)
of Pζ , for β = 1/2 (Fig. 3(a)) and β = 2 (Fig. 3(b)). Simulated
values are drawn from Monte-Carlo simulations of 105 finite
dimensional systems with N = 100. A Gaussian r.v. with same
mean and variance (black dashed line) is reported for reference.
As hinted by figures, the envelope of the distribution is increas-
ingly Gaussian as β increases. In particular, odd moments of
ζ are null, while the two first even moments are E[ζ2] = β
and E[ζ4] = β(1 + 3β), hence the kurtosis is κ = 3 + 1/β.
Since β > 0, ζ is always leptokurtic, and κ → 3 as β → ∞,
suggesting that a Gaussian approximation may hold for β ) 1.

III. CONCLUSION

In this paper, a model describing systems where users access
a resource independently was proposed. Each user assigns
labels to accessed slots: the label is a numerical value with sign,
i.e., accounting for polarity. Based on this model, an interfer-
ence measure called ζk for the generic user k that considers
the cumulative value of other users labels in terms of their sum
was considered. In particular, the case where each user accesses
one slot only and assigns a label −1 or 1 with equal probability
to the accessed slot was addressed. A closed form expression
of the distribution of this cumulative value was found in the
large-system limit: it was shown that, if the cardinality of the
population of users is a fraction β of the number of available
slots, then the distribution converges to a novel expression that
is in general far from Gaussian, and may be approximated by a
Gaussian distribution for β ) 1. Two proofs, one probabilistic
and the other based on analytic combinatorics, were provided.
In particular, the second proof presents a potentially fruitful
framework that can be used to derive further generalizations.
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Fig. 3. Theoretical envelope (red dashed line) versus simulated histogram
(filled circles) of (a) ζ for β = 1/2 and (b) β = 2. A Gaussian pdf with same
mean and variance is shown for reference.

APPENDIX

BASICS ON ANALYTIC COMBINATORICS OF LATTICE PATHS

We refer mostly to the seminal work of Banderier and
Flajolet [2].

Definition 1 (Lattice Path or Walk): A lattice path (or walk)
is a sequence (v1, . . . , vn) ∈ Sn where n is the length of the
path and

S = {(a1, b1), . . . , (am, bm) : (ai, bi) ∈ Z× Z}

is the set of steps. A path is:
• directed if ai > 0;
• simple if ai = 1 (in this case the set of steps is written as
S = {b1, . . . , bm});

• unconstrained (resp. constrained) if v ∈ Z× Z (resp. v ∈
Z× Z≥0).

We can assign a weight to each allowed step, that is S * s +→
w(s) ∈ R. The following definition is the starting point of the
analytic approach:

Definition 2 (Characteristic Polynomial): Let S be the set of
steps of a simple walk and wi the weight associated to bi. The
characteristic polynomial of S is:

P (y) =
m∑

i=1

wiy
bi .

The ending point of a walk is
∑n

i=1 vi that, for simple walks,
assumes the form (K − 1, h), where h is called final altitude.
Denote by Wnk the class of walks with length n and final
altitude k, and let Wnk = |Wnk|.

Definition 3 (Generating Function): The generating func-
tion of Wnk is defined as:

W (x, y) =
∑

n,k

Wnkx
nyk,

where x ∈ C is a mark for the length and y ∈ C is a mark for
the final altitude.

The following theorem links W (x, y) with P (y):
Theorem 2: The generating function of a simple walk is:

W (x, y) =
1

1− xP (y)
. (8)

Proof (Sketch): Rewrite W (x, y) as follows:

W (x, y) =
∑

n

[
∑

k

Wnky
k

]
xn =

∑

n

wn(y)x
n,

where wn(y) = [xn]W (x, y) is a Laurent polynomial in y
where [yh]wn(y) is the (possibly weighted) number of ways
to reach the final altitude h in n steps. Since the only alti-
tude reachable in 0 steps is 0, then w0(y) = 1; at step 1, the
reachable altitudes are described by P (y). In general wk(y) =
wk−1(y)P (y), and therefore a summation over k ≥ 0 yields
to eq. (8).
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